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MoNetExplorer: A Visual Analytics System for
Analyzing Dynamic Networks with Temporal

Network Motifs
Seokweon Jung, DongHwa Shin, Hyeon Jeon, Kiroong Choe, and Jinwook Seo

Abstract—Partitioning a dynamic network into subsets (i.e., snapshots) based on disjoint time intervals is a widely used technique for
understanding how structural patterns of the network evolve. However, selecting an appropriate time window (i.e., slicing a dynamic
network into snapshots) is challenging and time-consuming, often involving a trial-and-error approach to investigating underlying
structural patterns. To address this challenge, we present MoNetExplorer, a novel interactive visual analytics system that leverages
temporal network motifs to provide recommendations for window sizes and support users in visually comparing different slicing results.
MoNetExplorer provides a comprehensive analysis based on window size, including (1) a temporal overview to identify the structural
information, (2) temporal network motif composition, and (3) node-link-diagram-based details to enable users to identify and
understand structural patterns at various temporal resolutions. To demonstrate the effectiveness of our system, we conducted a case
study with network researchers using two real-world dynamic network datasets. Our case studies show that the system effectively
supports users to gain valuable insights into the temporal and structural aspects of dynamic networks.

Index Terms—Visual analytics, Dynamic networks, Temporal network motifs, Interactive network slicing
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1 INTRODUCTION

ADYNAMIC NETWORK is a data structure that captures
evolving relationships between entities over time. For

example, it is used to represent the evolution of social
interactions among community members [1], [2] or citations
between published papers [3]. Due to the temporal nature
of a dynamic network, many structural patterns within
a network emerge and disappear over time. Thus, it is
challenging to effectively capture the patterns by naively
using numeric metrics (e.g., edge density, node degree) [4].

One way to alleviate such an issue is to use network
slicing, which partitions dynamic networks over time into
slices (i.e., snapshots) and explores the structural patterns
within each slice. The main idea behind this technique is that
by independently analyzing slices at different time points,
it can capture structural patterns within a particular time
interval that may have disappeared over time.

Selecting an appropriate time interval (i.e., time-window
size) of snapshots is crucial for the success of network
slicing, as the observed patterns in the resulting snapshots
can drastically vary depending on the size of the win-
dows [5]. For instance, partitioning the data into hourly
intervals may reveal differences between patterns during
daytime and nighttime, while daily slicing may highlight
variations between weekdays and weekends. An appropri-
ate size of the window can differ based on both the data and
tasks [6], [7], and multiple appropriate window sizes may
exist. Therefore, it is essential to facilitate the exploration of
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different candidate time-window sizes for snapshot-based
analysis.

To address this need, we utilize the concept called tem-
poral network motifs (TNMs), which are defined as induced
subgraphs on sequences of temporal edges [8]. Network mo-
tifs, including temporal network motifs, have been widely
used to discover structural patterns of network data [9], [10].
We propose measures that leverage TNMs to extract the
structural features of a dynamic network by considering the
distribution of TNMs in a given network. These measures
provide a grounded basis for finding appropriate time-
window sizes.

However, although quantified measure-driven ap-
proaches [11], [12], [6], [7] exist for determining and val-
idating adaptive window sizes outside of the visualization
domain, there is still a need for human evaluation due to the
inherent loss of information resulting from the numerical
abstraction of networks [13]. Visual aids can effectively
capture evolving structural patterns by providing a detailed
depiction of structures and a high-level overview with net-
work motifs [14], [15]. Nevertheless, existing visualization
systems have shown limited interest in selecting and val-
idating window sizes, often relying on predetermined or
fixed options [16], [14].

We introduce MoNetExplorer, the first interactive visual
analytics system that leverages TNMs to facilitate selecting
and validating window sizes for slicing dynamic networks,
enabling the identification of time-evolving structural pat-
terns. Using our proposed measures using TNMs, MoN-
etExplorer recommends several window size options and
depicts the advantages and disadvantages of each option.
MoNetExplorer also suggests time window sizes that may
contain changes in structural patterns, utilizing both TNM-
based similarities between snapshots and changes in TNM-
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based measures. MoNetExplorer details the structural pat-
terns for specified snapshots of interest, including the com-
position of TNMs. By analyzing the composition of motifs in
the details, users can gain insights into the structural charac-
teristics of the network. At last, users can further explore the
data using familiar node-link diagram visualization. With
visualization and interaction techniques designed to explore
both temporal and structural aspects of a dynamic network,
MoNetExplorer enables users to perform the whole process
of dynamic network analysis, from selecting the window
size for snapshots to making detailed observations of snap-
shots of interest.

To validate the efficacy of MoNetExplorer, we conduct
case studies with two real-world dynamic network datasets.
The results demonstrate that the system is capable of han-
dling both directional and unidirectional network data, and
can effectively detect changing patterns in the temporal oc-
currence of actual historical events by adaptively exploring
multiple network slices.

The major contributions of this paper are as follows:

• We propose TNM-based quality measures for se-
lecting and validating window sizes for network
snapshot analysis.

• We design and develop MoNetExplorer, a visual
analytics system supporting the process of dynamic
network analysis from window size selection to the
identification of evolving structural patterns in dy-
namic networks.

• We evaluate the efficiency of MoNetExplorer in win-
dow size selection and dynamic network analysis
with two case studies and heuristic evaluation met-
rics.

2 RELATED WORK

2.1 Window Sizing for Slicing Dynamic Network

Selecting the proper window size of time slices, also known
as the temporal resolution of a dynamic network, is cru-
cial for understanding the evolving structure of a dynamic
network [17]. Depending on the size of the window, the
structure of the observed network varies [5]. Quantifying
network characteristics has been an effective approach to
determining the optimal window size for slicing dynamic
networks [11]. Classical network structure measures capture
the partial structural information of a network as numerical
scores. Sulo et al. [12] proposed a TWIN (Temporal Window
In Networks) algorithm for identifying window sizes with
network structure measures. By balancing the reduction of
noise with the loss of information on a particular measure,
the algorithm can determine the best window size that
reveals critical changes in the network structure. Uddin et
al. [6] defined positional dynamicity as a structural change
of nodes of a longitudinal network. The minimal variance of
the dynamicity, which can be interpreted as minimal noise
in distribution, ensures that the suggested window size is
neither too large nor too small for discovering changes in
nodes.

Another approach for quantifying a dynamic measure is
to measure the distance between two network snapshots.
Jaccard similarity is a widely used metric to calculate the

distance between consecutive snapshots. Chiappori et al. [7]
proposed stability and fidelity, which respectively measure
the reduction of noise and the preservation of noise between
two consecutive snapshots. The window size that balances
the two metrics is supposed to be optimal. Orman et al. [18]
applied a Jaccard similarity between three different elements
of dynamic networks: node similarity, link similarity, and
neighbor similarity, and utilized the noise and compression
ratio proposed by Sulo et al. [12] to each similarity to deter-
mine the proper window size. However, reducing snapshots
into a few numerical scores results in information loss and
provides limited support for comprehending the evolving
structure.

From the perspective of visualization, various window
sizing has been tried to lessen the cognitive burden of
users. In common, the distribution of events, which can
be transferred into edges of dynamic networks, has been
widely used to determine the size of windows. Arleo et
al. proposed MultiDynNoS [19], which calculates a proper
static window size: autotau, for their dynamic graph visual-
ization technique based on the distribution of events. Wang
et al. [20] and Ponciano et al. [21] proposed nonuniform
time-slicing methods based on the distribution of events.
Their approaches are in opposite directions: Wang et al. tried
to lower the variance of events in every snapshot, which
results in short window sizes in dense time periods. In
contrast, Ponciano et al. consider that high-activity periods
contain too much visual information, so they represented
them with large window sizes. The aforementioned research
aims for an optimal time-slicing strategy for visual analysis
of dynamic networks. However, events are the most basic
graph concept [22], therefore cannot fully represent the
structural and temporal features of dynamic networks.

We propose TNMs [8] as an effective method to repre-
sent evolving structural patterns in dynamic networks. The
robustness of the TNM as a measure effectively captures
the structural information of evolving networks. Moreover,
the interpretability and simplicity of these motifs enable
human-in-the-loop exploration. A detailed description of
TNMs is shown in Section 3.2.

2.2 Validation of Snapshots
Once an appropriate window size is determined, it is also
crucial to evaluate the resulting snapshots to ensure their
successful representation of the evolving patterns of dy-
namic networks. Several validation measures have been
proposed to assess sliced networks in terms of minimizing
noise [12], [6], [7] and information loss [12], [6], [7]. An alter-
native approach involves utilizing distance-based clustering
algorithms to summarize temporal patterns as a sequence of
clusters to which each snapshot belongs. Masuda et al. [23]
tested five different distance measures and ran hierarchi-
cal clustering of snapshots with them, where clusters of
snapshots are treated as states. The authors compared the
state extraction performance of different distance metrics
by showing state changes. Still, quantified metrics capture
only partial information about network structures. Even
the distance measures do not account for similar structures
composed of different sets of nodes.

The process of generating and validating network snap-
shots involves exploring multiple potential options, which
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requires a visual analytics system that includes a human
examination. Regarding window size selection, it is com-
monly accepted that there is no optimal window size for
all analysis purposes [6], [7]. Similarly, validating the re-
sults obtained from slicing requires a qualitative approach
using visualizations, as task-dependent effectiveness (e.g.,
outlier detection) is insufficiently supported by quantita-
tive measures[12], [23], [7]. Building upon the capability
of TNMs to robustly represent network structures, we de-
veloped snapshot validation measures inspired by existing
research. Moreover, the interpretability and simplicity of
these motifs enable human-in-the-loop exploration of var-
ious sliced results in our system. We provide a detailed
discussion of snapshot validation measures in Section 4.

2.3 Visual Analysis of the Dynamic Network

Understanding the evolving patterns of dynamic networks
involves comparing multiple snapshots. To visualize mul-
tiple snapshots, animation-based and timeline-based are
the two common approaches employed [24]. Crnovrsanin
et al. [25] proposed staged animation strategies that can
visualize temporal changes of dynamic networks effectively.
However, the animation-based approach, which relies on
human visual memory, is not suitable for tasks that require
users to compare multiple networks [26], [27].

In the timeline-based approach, a common method is to
use small multiples of elementary visualizations [28]: node-
link diagrams and adjacent matrices. However, their ability
to convey detailed structural patterns becomes limited as
the number of networks and their complexity increase the
recognition of intricate structural patterns between a limited
set of nodes, which can be impeded by high edge density or
the prevalence of other arbitrary patterns [16], [29].

Several studies in the visualization field have attempted
to address issues related to visual scalability when repre-
senting dynamic networks; however, the investigation of
diverse window sizes has not been a primary focus. To
address the challenge of scalability, Lee et al. [1], [30] de-
signed an interactive visual analytic system utilizing a large
display. In general, however, visual analysis takes place
within a limited small display space. Researchers extracted
high-level features from dynamic networks in limited dis-
play space to visualize the temporal overview. For exam-
ple, GraphFlow [31] summarizes the temporal evolution of
graph metrics over time. To show a structural overview,
Cakmak et al. [32] utilized the distribution of 13 different
static network motifs in snapshots. LargeNetVis [33] pro-
vides three information taxonomies—temporal, structural,
and evolution—to achieve the visual exploration of network
communities. However, most visualization approaches slice
dynamic networks with fixed window sizes based on back-
ground knowledge [16], [31], [14]. Although some studies
have provided a set of a few window size options [34],
[35], [32] or algorithms to determine data-driven window
size [33], the human role of exploring various window sizes
is not sufficiently considered by design.

MeasureFlow [36] provides recommendations for win-
dow sizes based on the measure called connected nodes
and its Fourier transform. It also provides visualizations
and interactions to explore dynamic networks through a

Fig. 1. The illustration of 36 different 2-node, 3-node, and 3-edge ∆w
motifs. Motifs can be divided into seven groups: pair (P), cycle (C),
triangle (T), in-burst (I), out-burst (O), ping-pong (R), and others (E).
Detailed definitions and descriptions can be found in Table 1

time series of various network measures. This approach
seamlessly joins the selection of the proper window size
and the visual analytics of a dynamic network. However,
solely using the connected nodes measure is limited in
reflecting all the complex information within the structure of
the network. Further, the design for window size selection
does not provide the reasoning for the recommendation.

We designed a visual analytics system capable of deter-
mining the proper window size of a dynamic network and
performing validation using our novel snapshot validation
measures. Furthermore, we enhanced the system to support
temporal pattern recognition and detailed pattern analysis,
features commonly available in other visual analytics sys-
tems. A description of our visualization design can be found
in Section 5.

3 BACKGROUNDS

3.1 Dynamic Networks

We represent a dynamic network as N = {V,E, T}, where
V is the collection of nodes, E is the collection of edges
between the nodes, and T is the collection of timestamps.
Each edge etij ∈ E is a timestamped directed edge from
node vi to vj , denoted by (vi, vj , t) where vi, vj ∈ V and
t ∈ T . From T , we extracted a number of timestamps
from T; (t0, t1, ..., tk, ..., tend) ∈ T with a uniform interval
w: tk+1 = tk + w. The first timestamp begins from the
minimum value of T : t0 = min(T ), and the last timestamp
is equal to the maximum value: tend = max(T ). As an
exception, the last timestamp may have an interval between
0 and w: tend = tend−1 + w′, 0 < w′ ≤ w.

A dynamic network N can be divided into a series of
dynamic sub-networks N = (S1, S2, ..., Sk). Where each
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sub-network Sk at the timestamp tk consists of a set of ver-
tices and nodes V[k−1,k) and a set of directed edges E[k−1,k)

exists between timestamp tk−1 and the next timestamp tk.
Building upon previous studies [12], [6], [7], we treated
each sub-network as a distinct dynamic network and uti-
lized temporal network motifs to capture the relationships
between them.

3.2 Temporal Networks Motifs

Temporal network motifs (TNMs) are predetermined inter-
connection patterns in dynamic networks considering tem-
poral order [37], [8]. Motifs work as basic building blocks
of networks [38] so that their occurrences can represent
the structural and temporal characteristics of the original
network. TNMs have been shown to be a viable method for
classifying dynamic network data in various domains, such
as social networks [39], collaboration networks [40], [41],
[9], biological networks [42] and travel patterns [10]. Fur-
ther, Crawford et al. [43] showed that topological similarity
based on TNMs can be used for the clustering of dynamic
networks.

There exist two different notions about the time duration
of TNMs: ∆c motifs [37] and ∆w motifs [8]. The former
defines TNMs as a set of events whose time difference
between consecutive events is less than the threshold ∆c.
The latter defines TNMs as a set of events whose time
difference between the last and the first events in a motif
is less than the window size ∆w. ∆c and ∆w motifs are
known to have complementary features; the former fails to
bound time spans, whereas the latter introduces bias for
the occurrence of intermediate events [44]. We adopt ∆w
motifs because ∆w is more suitable for use as the window
size of snapshots, and the bias can be overcome with data
processing.

The definition of ∆w motifs can be denoted as k-node,
l-edge, ∆w-temporal motif is a sequence of l-edges that
are time-ordered within a ∆w duration, such that induced
static graph from the edges is connected and has k nodes.
Additionally, we limited our scope to 2- and 3-node, 3-
edge motifs, limiting the number of network motifs to 36
different types. This is because extending the size of the
motifs may reveal new insights, but it causes the data
to have too high dimensions and increases computational
complexity. For example, including 4-edge motifs would
result in considering about 700 motifs.

According to Paranjape et al. [8], 2- and 3-node, 3-
edge motifs are composed of three groups: pair(P), triangle,
and star-shaped motifs. We divided triangle motifs into
two subgroups: triangle (T) and cycle (C), according to the
consistency in the orientation of the edges. We also divided
the star motifs into four subgroups: in-burst (I), out-burst
(O), ping-pong (R), and the others (E). The former three
subgroups are distinguished according to the more detailed
internal structure of motif [44]. The rest of the star-shaped
motifs are classified as the others. The definition of each
group can be found in Table 1, and their appearances in
Figure 1.

The distribution of TNMs varies greatly depending on
how nodes inside the network relate to each other. For
instance, the pair and ping-pong motifs have been detected

TABLE 1
The seven types of temporal network motifs and their descriptions.

Images of all 36 motifs are shown in Figure 1.

Type Not. Description

Pair Pi motifs consist of two nodes and three edges

Cycle Ci
triangle motifs whose relationships are continu-
ous in one direction

Triangle Ti
motifs that have relationships between all three
nodes

In-burst Ii
motifs whose three edges come into a certain
node.

Out-
burst Oi

motifs whose three edges go out from a certain
node.

Ping-
pong Ri

motifs whose two consecutive edges make a
round trip between two nodes.

Others Ei motifs that are not classified.

significantly in network data for social media platforms
such as Facebook and SMS-A [8], [44], showing that a large
number of social media users repeatedly interact with each
other through retweets or replies. Bitcoin network data,
which consists of consecutive transactions between crypto
wallets, are rich in cycle motifs [8].

3.3 Task Design

Based on the TNMs definition and the examples of TNMs
distribution varying depending on the network structure,
we determined that TNM would be available as a numer-
ical value reflecting the structural feature of the snapshot.
From this insight, we figured out four tasks in slicing and
analyzing dynamic networks. The first task is grounded
on the window sizing of dynamic networks, while the
other three tasks are based on task taxonomy for dynamic
network visualization defined by Kerracher et al.: lookup,
comparison, and relation seeking [45].

• Task 1: (Window sizing) Select the appropriate win-
dow size for the analysis of dynamic network data.

• Task 2: (Comparison) Observe temporal changes in
network structures of snapshots and find relations
between them.

• Task 3: (Look up) Find a structural pattern to describe
the snapshots.

• Task 4: (Relation seeking) Find the subsets of graph
elements in snapshots related to a given structural
pattern.

4 SNAPSHOT VALIDATION MEASURES

We propose three snapshot validation measures—Motif Fi-
delity, Motif Stability, and Motif Clusterness—assessing
the overall suitability of window sizes. These measures
leverage TNMs to validate and select appropriate window
sizes that effectively partition dynamic networks.
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Fig. 2. Depiction of data processing. (A) Dynamic network N is sliced
into snapshots: S1 and S2 which have the same window size (w). The
concatenated result of consecutive snapshots can be denoted as S1,2.
(B) Then, motif vectors of TNMs are extracted from each snapshot. (C)
Finally, the motif vectors are normalized and transformed into Z-scores.
The detailed description of the process is described in Section 4.1.

4.1 Data Processing
Given dynamic network data N and snapshots S1, S2, ..., St

divided based on a time window ∆w (Figure 2:A), we
extract a global motif vector M corresponds to N , and
local motif vectors M1,M2, ...,Mt, where Mk corresponds
to Sk (Figure 2:B). M(k,k+1) refers motif vectors extracted
from consecutive two snapshots Si and Sk+1. We use the
fast motif extraction algorithm [46] to extract motif vectors.
As mentioned before, ∆w motifs have a problem in that
biases occur severely due to an imbalance between each
vector element. In addition, the composition of motifs is
not very informative in their raw form [38]. Therefore, we
utilized Z-scores to overcome those obstacles (Figure 2:C).
The Z-score of i-th snapshot is defined as:

Zi =
L1norm(Mi)− µ

σ

Cosine similarity has been used to calculate the similar-
ity between z-scores of motif vectors [14].

4.2 Definitions
We propose three snapshot validation measures. Following
previous research (Section 2), we design a measure estimat-
ing the amount of information preserved while slicing [12],
[6], which we call Motif Fidelity. We also implement a
measure evaluating the stability of snapshots (Motif Sta-
bility). At last, we propose Motif Clusterness representing

the degree to which snapshots form clusters. The detailed
design of each measure is as follows:
Motif Fidelity evaluates how much information has been
preserved while slicing. High fidelity means that the infor-
mation loss that occurred by slicing is small; thus snapshots
well reflect the structural and temporal characteristics of the
original network.

Motif Fidelity can be computed both in a global and
local manner. Local similarity measures the information
preservation between two consecutive snapshots. It equals
the similarity between the motif composition of the sum
of the snapshots and the sum of the motif composition of
the snapshots. Global fidelity is defined as the weighted
average of local fidelity, where weight equals the number
of motifs included in local snapshots. Since the result of
cosine similarity ranges from -1 to 1, we adjust the range
of the result values from 0 to 1 through normalization.
Formally, local fidelity between two consecutive snapshots
MF (Si, Si+1) and global fidelity MF is defined as:

MF (Si, Si+1) =
1 + cos(Zi + Zi+1, Z(i,i+1))

2

MF =

∑
{MF (Si, Si+1) · |Mi +Mi+1|}∑

|Mi +Mi+1|
Motif Stability measure validates the quality of snapshots
by measuring how stable the snapshots are. By minimizing
the variance in motif composition for each snapshot, it’s
possible to reduce noise that occurs over time, thereby
allowing for an evaluation of stability.

As with Motif Fidelity, Motif Stability is defined both
globally and locally. Local stability is the similarity between
two consecutive snapshots. Global stability is defined as
the weighted average of local stability scores. Weight is
computed based on the motif counts of each snapshot. This
allows normalization with respect to the number of motifs
in each snapshot. Since the result of cosine similarity ranges
from -1 to 1, we adjust the range of the result values from 0
to 1 through normalization. Formally, local stability between
two snapshots MS(Si, Si+1) and global stability MS is
defined as:

MS(Si, Si+1) =
1 + cos(Zi, Zi+1)

2

MS =

∑
{MS(Si, Si+1) ·min(|Mi|, |Mi+1|)}∑

min(|Mi|, |Mi+1|)
Note that without mentioning global or local, referring

to MF and MS means the global version of the measure.
Motif Clusterness evaluates how well snapshots can be
clustered. The clustering results can be regarded as states
of snapshots [23]. If the states of the snapshots are well
distinguished, it is easy to determine the temporal evolution
of dynamic networks. Therefore, Motif Clusterness can
be used as a proxy for performance in temporal pattern-
discovering tasks.

We applied the HDBSCAN algorithm to cluster snap-
shots. We used HDBSCAN as it is known to be applicable to
our 36-dimensional data because of its robustness to noise
and high clustering performance with high-dimensional
data [47], [48]. Then, we validated the clustering result with
s dbW [49] measure, as it is one of the most robust clustering
validation measures [50]. The closer the s dbW score is to 0,
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Fig. 3. The interactive workflow for identifying evolving structural patterns in a dynamic network. Users can select window size, temporal filter, and
structural filter to explore multiple network slicing options. (1) Users select window size through rank-based recommendations for window size using
three measures we designed from TNM. (2) Users can observe the temporal evolution of the local version of measures and states of snapshots and
identify patterns of them. (3) Users undergo structural analysis of selected snapshots by choosing a specific TNM and nodes through its distribution.
(4) The resulting node-link diagram provides a detailed visualization of the filtered network.

the better the performance. Therefore, we adjust the range
of the result values from 0 to 1 through normalization and
set the result higher the better. Formally, Motif Clusterness
MC is defined as:

MC = max(1− s dbW (HDBSCAN(M)), 0)

The suggested three measures are designed to evaluate
the quality of slicing from different perspectives. Therefore,
they can be an effective solution for evaluating the quality of
snapshots, working as criteria for selecting the proper win-
dow size for dynamic network datasets (T1). Also, as they
are based on the cosine similarity between snapshots, they
can be used to figure out the relations between snapshots
(T2).

4.3 Computational Complexity

Most of the computational cost of the system arises from
the extraction of TNMs from the network and the clustering
of snapshots. For the i-th node of the dynamic network
Vi, the degree of Vi can be denoted as di. The average
number of edges connected to the i-th node within time
interval w as dwi , The scalable TNM counting algorithm
suggested by Gao et al. [46] assumes dwi of all nodes is
approximately equal, denoted dw, and defines the upper
bound of motif counting time complexity as O(2dw|E|) for
counting pair/triangle-shaped motifs and O(2(dw)2|E|) for
star-shaped motifs. The motif extraction algorithm can be
found in the following link 1. As HDBSCAN has O(N logN)
computational complexity when dynamic network data is
sliced into S snapshots with w window size, the upper
bound of computational complexity would be the following:

O(S logS) +
S∑

i=1

O(2dw|Ei|+ 2(dw)2|Ei|)

5 SYSTEM DESIGN

In this section, we describe the workflow and tasks of
our visual analytics system, MoNetExplorer, as well as its
visual components: Slicing Navigation View (Figure 5.A),

1. github.com/steven-ccq/FAST-temporal-motif

Temporal Measure View (Figure 5.B), Temporal Status View
(Figure 5.C), Motif Composition View (Figure 5.D), and
Network View. (Figure 5.E).

5.1 Workflow

One of our primary objectives is to enable the interactive se-
lection and validation of window sizes to partition dynamic
networks (T1) and identify relations between snapshots
based on proposed validation measures and states (T2).
Then, searching for structural patterns in snapshots with
TNMs (T3) and graph attributes related to the patterns (T4)
should be possible.

Before running the system, the base time unit should be
selected. The base time unit is a default unit of window size,
predetermined in consideration of the properties of the data
and the task to be performed. Candidate window size is
determined by the base time unit, which is provided in the
range from the single base time unit to the next unit of base
time unit. For instance, if the base time unit is determined
as a month, then the candidate window sizes range from a
month to twelve months.

Then, we designed our workflow (Figure 3) to achieve
this objective in accordance with the given tasks and the
visual information seeking mantra [51]:“overview first, zoom
and filter, and details on demand.” Our system then provides
a rank-based recommendation for window sizes within
candidate window sizes that demonstrates a strong fit in
terms of our TNM-based metrics, showing an overview
of potential slicing options. Note that each window size
possesses varying capabilities in revealing distinct patterns
at different time window sizes, even if it is the highly-ranked
option. Thus, once a user selects a specific window size to
examine, our system offers a hint of the most compatible
time window by showing the plot of local TNM-based
metrics along the temporal axis. This approach enables
users to select a window size and determine a temporal
filter for further examination. Following this, the system
showcases the distribution of motifs in the resulting tem-
porally filtered dynamic network, highlighting structural
patterns. Once users identify noteworthy patterns in certain
motifs, they can select them as a structural filter. Lastly, with
the established window size, temporal filter, and structural
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Fig. 4. MoNetExplorer is a visual analytics system designed to support the selection of appropriate window sizes for dynamic network analysis
and provides a temporal and structural analysis of snapshots that are sliced according to window sizes. The system is composed of five linked
components. (A) Slicing Navigation View supports the beginning of the workflow: selection of snapshot window sizes according to measures based
on Temporal Network Motifs (TNM). (B) Temporal Measure View and (C) Temporal Status View enable validation of the quality of snapshots and
identification of temporal patterns. (D) Motif Composition View visualizes the composition of temporal network motifs. (E) Bottom-level details of
network structure are shown in Network View.

filter, the system presents a node-link-based view that offers
comprehensive details on the dynamic network.

From now on, to describe MoNetExplorer’s visualization
and interaction designs, we follow the suggested workflow
and demonstrate tasks with the Enron email communication
network dataset [52]. Enron data are built from approx-
imately 500,000 internal emails generated by employees
of the Enron Corporation. The Federal Energy Regulatory
Commission obtained it during its investigation of Enron’s
collapse. We utilized the network dataset constructed by
Priebe et al. [4], which extracted senders, recipients, and
timestamps from emails and transformed the data into a list
of edges. The dataset includes 184 nodes and 108825 edges
in the time range from 13 November 1998 to 21 June 2002 (44
months). The dataset can be found in the following link2. In
order to prevent the number of time slices from becoming
too large or too small, we determined the base time unit
of the slicing window on a daily basis in consideration of
the time period of the data. Therefore, 31 different windows
became the candidate window sizes from one to thirty-one
days.

5.2 Slicing Navigation View
The Slicing Navigation View (Figure 5A) facilitates proper
window size selection based on three distinct measures Sec-
tion 4 (Task 1). To offer recommendations based on the mea-

2. cis.jhu.edu/∼parky/Enron/

sures, a sortable table was created to present the window
size and measure information. The table allows for metric
ranking to be altered by changing the evaluation criteria
through an alignment function, similar to LineUp [53] or
Taggle [54]. As mentioned at the end of Section 5.1, we
decided to utilize the day as a base time unit. Therefore,
we have thirteen candidate window sizes: a day to 31 days.
The information provided in the table includes candidate
window sizes and their corresponding basic structural de-
tails, such as the number of slices and the average number
of motifs per slice. Three measures—Motif Fidelity, Motif
Stability, and Motif Clusterness—are included in the table
as horizontal bar charts, with each number being mapped
to a corresponding length. Each measure is partitioned into
distinct colors, and this color scale is utilized in other views
throughout the system. Users can select which measure to
sum up to the overall score by clicking the column header
of each measure (Figure 5).

Users can select the desired measures from the three
provided measures and rank them based on their sums. The
sum is presented as a separate bar, allowing users to select
the most preferable window size overall. The number of
slices and the average number of motifs per slice provide
estimates of the slicing result’s quality and are presented
in numerical form. Adjusting the window size is crucial
to ensure that these two figures are appropriate. Too many
slices lead to an increased cognitive burden; conversely, too
few slices make it difficult to discern notable temporal de-
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Fig. 5. The interaction technique for measure selection in Slicing Nav-
igation View. Users can directly select which measure to use when
calculating the overall score within three measures: Motif Fidelity, Motif
Stability, and Motif Clusterness.

velopments. Likewise, when the average number of motifs
is minimal, the pattern tends to be unstable, but when it’s
excessive, the pattern becomes overly stable.
Scenario. According to the workflow defined in Section 5.1,
we first validated window sizes to determine preferable
ones. When comparing ranks based on the sum of all
three measures, a window size of 29 days showed the
best performance (Figure 4.A). It falls to ninth place if we
remove Motif Clusterness from the ranking criteria, and
the 31-day window size comes up from second place to
first place Figure 5. Therefore, we concluded 31-day is a
better window size than 29-day because it ranked higher on
average.

5.3 Temporal Measure View
The Temporal Measure View (Figure 4.B) provides a visual
representation of the local fidelity and local stability between
consecutive snapshots of a dynamic network. As the global
manner of Motif Fidelity and Motif Stability can provide
insight the local fidelity and stability between snapshots
should remain high if the slicing is done appropriately.
However, if the window sizing is inappropriate, this can
result in low local fidelity and stability. Visual elements
representing local fidelity and stability are colored with the
color scale used in the Slicing Navigation View so that users
can consistently proceed with the analysis process.

The view includes two histograms on the left side of
the view, which display the snapshots’ local stability and
fidelity distributions (Figure 4.B). These histograms provide
an overview of the quality of the snapshots, where higher
values indicate greater stability and information preserva-
tion. Furthermore, the histograms can be utilized as filters,
allowing users to select snapshots that fall within specific
ranges by selecting the corresponding time intervals. This
feature can be used to analyze the cause of low scores
for particular snapshots and to adjust the window size
accordingly.

On the right side, a temporal plot shows the change
in both measures between consecutive snapshots. In this
view, points aggregated in the histogram on the left can be
observed individually. We use plots instead of a line chart

to make identifying when low numbers occur easier. Users
can adjust the window size in the Slicing Navigation View
to explore the area more efficiently. If the local fidelity is
low, it indicates that many motifs have been lost due to
slicing, and the window size should be reduced. Conversely,
if the local stability is low, it suggests that there is a large
difference between consecutive snapshots, and the window
size should be increased. For effective observation, the view
supports zoom in/out and pan for exploration.
Scenario. With the selected 31-day window size, we can
identify fluctuations between snapshots in MF and MS.
With vertical bar charts on the left, we can see that MF
remained high overall, but the MS did not. To drill down
to detail with temporal plots on the right, from snapshot
index 5 to 13, MF are high, but MS are low. We can
understand that more aggregated slicing is needed for this
period. Around 32th snapshot, both MF and MS fall
dramatically compared to surrounding snapshots. From this
phenomenon, we can expect that the network has under-
gone major structural changes at this time.

5.4 Temporal Status View

The Temporal Status View (Figure 4.C) provides a high-
level overview of changes between snapshots in a dynamic
network. Clusters of snapshots are computed with the HDB-
SCAN clustering algorithm based on the cosine distance
between snapshots. Snapshots with the same cluster label
can be said to have similar motif distributions. This allows
us to assume that snapshots with the same cluster label
exhibit similar high-level structural patterns. We can then
refer to these as the state of each snapshot.

On the left side, an adjacency matrix displays the dis-
tance between states, enabling users to validate the Motif
Clusterness by evaluating how well clustering has been per-
formed. For efficient space usage, we render only half of the
adjacency matrix to represent all the information, leveraging
the symmetric nature of the cosine distance. If the distance
between different states is large, it can be considered good
as it means they are well distinguished. Therefore, a greater
distance is indicated by the green color, and a closer distance
is indicated by the red. This can be verified using the legend
on the left side of the matrix. The cells in the truncated
boundary where the same nodes intersect are drawn as a
triangle, and then the assigned colors for each state are used
to fill the cells. The adjacency matrix visualizes the states by
arranging them in sorted order through PCA, with colors
assigned based on the Viridis color scale proportional to the
order. As an exception, states identified as noise are mapped
in gray. This allows for easy comparison of the similarities
between different states based on their assigned colors and
indicates the proportion of snapshots that are identified as
noise.

Next to the matrix, a horizontal bar chart (Figure 4.B)
visualizes the number of snapshots included in each cluster.
The adjacency matrix and the horizontal bar chart work
as not only an overview of the states of the snapshots
but also filters for them. With click interaction, users can
select multiple snapshots simultaneously. On the right side,
a bar chart shows the change in state and motif count over
time, with each bar representing a snapshot. The height of
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each bar represents the motif count, and the color shows
the state. By examining the change in motif count, users
can identify the density of each snapshot and understand
how the density changes over time. The color changes also
provide insight into how the state has changed significantly,
allowing users to detect trends such as change points and
outliers.
Scenario. Upon examining the matrix on the
left(Figure 4.C), we can figure out how many states
are present and the extent of their separation. The -1
category, which denotes items classified as noise, is the
most numerous, suggesting a reason for the low Motif
Clusterness observed. State 0 and 1 are notably close to
each other, while states 2, 3, and 4 exhibit similarities.
A significant distinction is observed between the group
comprising states 0 and 1 and the group of states 2, 3,
and 4. The overall trend observed in the temporal bar
chart(Figure 4.C) shows a dominance of transition from
0 to 1, followed by a frequent appearance of states 2, 3,
and 2, and then a shift back to 0 and 1. A particularly
interesting point noted in our measure view is around the
32nd snapshot, where there’s an abrupt transition from
states 2, 3, and 2 to state 1, highlighting a very significant
gap. Temporal Measure View

To summarize the observation result of Temporal Mea-
sure View and Temporal Status View, the time period from
the 29th snapshot to the 34th snapshot shows not only low
MF and MS scores but also an abrupt transition of states.
According to the external information, this time period is
when the Enron stock hit an all-time high price, occurred
on August 23, 20003 [55]. Therefore, there is a need to find
out what structural patterns exist and what differences exist
between states through further analysis of this period.

5.5 Motif Composition View
The Motif Composition View (Figure 4.D) presents a pixel-
based heatmap visualization [56] of the motif composition of
snapshots chosen in the previous step [14]. A separate row
above the top of the heatmap shows each snapshot’s state
with the color scheme. The heatmap comprises 36 rows,
each representing 36 different temporal network motifs. In
order to visually distinguish the seven previously defined
types of temporal network motifs, the heatmap is separated
into seven groups of rows. Each cell of the heatmap shows
what z-score the motif corresponding to the row located in
the cell has in the snapshot or node corresponding to the
column through the blue-to-red color scale.

The row header displays the type and numbering of
TNMs, and users can check the shape of the motif by
hovering a mouse pointer on them.

Users can choose between cluster order or time order
for the x-axis and select which unit to aggregate the x-axis
through two drop-down menus at the top: snapshot or node
(Figure 4.D). When the x-axis is set to snapshot, users can
view the motif distribution of each snapshot selected in the
previous step. The color scale of each snapshot is identical
to the color of the state. To provide a more informative
visualization, a color scale is applied using the ratio of
the normalized global average as a scale. Therefore, the

3. piratepeel.github.io/code/enrontimeline.txt

motif distribution of each snapshot is compared with the
motif distribution of the entire network as the baseline to
obtain a ratio and adjust the opacity of the cell accordingly.
Sorting in chronological order enables the identification of
changes over time, while sorting in cluster order enables
the identification of cluster characteristics and differences
between clusters.

When a node is selected as the x-axis, users can obtain
the distribution of motifs, including the node for the set of
existing nodes in the selected snapshots. It acts as a motif
degree vector (MDV) and provides rough information about
the node’s role. Based on the MDV, we cluster the nodes
again to obtain the relationship between nodes and map
different colors to each cluster. The color scale enables users
to distinguish what they are currently searching for by using
a different series than when they are in snapshot alignment.

If nodes are sorted according to their clusters, they are
grouped and listed according to the cluster results. This
enables users to understand how network nodes can be
clustered and the characteristics of each cluster. If the align-
ment criterion is a snapshot, the nodes are aligned by the
smallest timestamp they are included. In this case, users can
observe the appearance of nodes and changes in their motif
compositions.

Motif Composition View allows for the interactive se-
lection of a specific snapshot or node, or their intersec-
tion, through a click interaction. This selection can provide
valuable insights into these elements’ roles in the network.
Specifically, nodes and edges present in the selected range
can be highlighted in the Network View on the right. This
functionality enables users to explore the selected elements
in greater detail and gain a deeper understanding of their
contributions to the network’s overall structure and behav-
ior. Further details on this feature will be provided in the
following section.
Scenario. We selected six snapshots, from the 29th to the
34th, to analyze structural patterns and temporal changes.
For structural analysis, we sorted snapshots in cluster order
and compared their motif compositions. States 3 and 4
shared similar features: high z-score in triangle, cycle, in-
burst, and some ping-pong type TNMs, as the heatmap
filter in Temporal Status View forecasted. State 2 was also
similar but differed in in-burst type TNMs. State 1 was
distinct from others, which had low scores in cycle and
ping-pong types and high scores in out-burst TNMs. As
we sorted the snapshots in temporal order, we can observe
that throughout time, the states of snapshots changed from
other states to state 1. From this observation result, we
could assume that after the stock price peaked, some Enron
employees started to send emails to other employees.

5.6 Network View

The Network View (Figure 4.E) represents the structure
of selected snapshots as a node-link diagram. We adopt
this node-link diagram since it is a well-known and tradi-
tional representation of the network structure. Thus, users
can intuitively understand and navigate the network of
their interest shown in this visualization. Nodes of selected
snapshots are represented as circles, and the relationships
between a pair of nodes are represented with a straight
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Fig. 6. Motif Composition View (left), whose domain of the x-axis is selected as the node and aligned in cluster order. The yellow cluster shows
abundant out-burst, ping-pong, and other-type motifs compared to other clusters. One of the CEOs is included in this group of people: Kenneth Lay
(green dotted lines). Some nodes in the light-grey cluster also show high scores in triangle and cycle motifs, one of whom is the other CEO, David
Delainey. Network View (right) visualizes selected nodes. Two CEOs are neighboring a group of nodes with abundant ping-pong and cycle motifs
(yellow cluster).

line. The higher the frequency of interaction between two
nodes, the thicker the corresponding link rendered so that
users can recognize the strength of the relationship between
nodes. When the number of nodes is small, the label that can
identify the node is shown together, and when the number
increases, the label disappears, but detailed information can
be found through mouse-hover interaction.

To enable users to inspect the detailed structure of
temporal network motifs in snapshots, we reduced the
scalability by only visualizing nodes and links that are
contained in the selected motif types and snapshots in Motif
Composition View. This feature enhances the usability of the
Network View and provides a more detailed and flexible
network structure analysis.
Scenario. From Motif Composition View, we selected the
32nd and 34th snapshots to analyze the detailed pattern of
state 1.

As triangle and cycle motifs are abundant under state 1,
we can infer that a large portion of interactions are made
in a closed group of nodes (Figure 4.D). Out-burst motifs
are also abundant, which implies the presence of someone
who is continuously sending a stream of emails. Therefore,
we can assume that the CEO was selected through extensive
interactions within a closed group, and the CEO intervened
in the decision process. The individual with the high out-
burst motifs is likely to be one of the CEOs. Interestingly,
when we set an x-axis of Motif Composition View as nodes
and align it according to the clusters (Figure 6), we could
figure out some nodes with high scores in cycle and triangle
motifs, and their position in the given snapshots in Net-
work View (Figure 6). Two CEOs, Kenneth Lay and David
Delainey, and a group of people around them are actively
interacting with each other.

6 CASE STUDIES

We conducted case studies with two participants (P1, P2)
who are experts in dynamic network analysis to evaluate
MoNetExplorer in terms of efficacy in practice and identify
further improvement opportunities. We recruited two re-
searchers who have at least three years of dynamic network

analysis experience and who don’t have any contribution
to designing or developing MoNetExplorer. The logic dia-
grams of their workflows in case studies can be found in the
appendix.

6.1 Experiment Setting
For the experiment, participants used MoNetExplorer on
a 27-inch FHD monitor, equipped with a mouse as their
input device. After a five-minute introduction about our
research goal and a 10-minute tutorial of MoNetExplorer, a
participant spent 30 minutes on their desktop playing with
the system. Participants’ goal was to carry out tasks: finding
temporal patterns, selecting the best-fit window size for the
dataset, analyzing node attributes, and studying patterns
with temporal network motifs. We requested participants to
share their discoveries and explain how they arrived at their
conclusions. Throughout each session, we assisted partici-
pants, answering any questions they had. The experiment
was fully transcribed.

For the evaluation of the system, we selected four heuris-
tic evaluation criteria: Insight, Time, Essence and Confi-
dence proposed by Wall et al. [57]. Although these metrics
can be employed to evaluate the quality of visualizations
qualitatively, the limited sample size resulting from our case
study necessitates a different approach. Consequently, we
gathered qualitative feedback for each category by conduct-
ing interviews. A brief description of the criteria is shown
in Table 2.

6.2 Case Study: Enron Email Network
We conducted a case study with the Enron email dataset,
which is also used to demonstrate the visualization design.
We asked P1 to perform the aforementioned tasks with
MoNetExplorer.

To find the best-fit window size for the Enron dataset
(T1), P1 focused on the overall score of three measures in
the Slicing Navigation View. P1 said that if the suggested
three measures are reasonable, the most reasonable way
is to choose the best-fit window according to the overall
score. It made P1 less interested in other candidates who
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TABLE 2
The definitions and brief descriptions of four evaluation criteria.

Criteria Description

Insight How a visualization supports intentional and inci-
dental insights

Time
How a visualization facilitates faster, more efficient
understanding of data concerning both searching
and browsing of data.

Essence How a visualization communicates the essence of
the data set with respect to overview and context.

Confidence
How visualization helps a user feel confident in
understanding the data set with respect to the data
quality and the visualization quality.

have lower ranks. ”If the first window size at the top shows
the best performance in all three measures, then there is
no reason not to select it”, P1 said. Therefore, without any
trials for other window sizes, P1 selected 29 days, which
is the top-rank window size. However, P1 expressed confi-
dence in Motif Fidelity and Motif Stability but expressed
some doubts about Motif Clusterness. ”I still don’t fully
understand why a cluster validation measure can be used
to estimate the quality of dynamic network slicing.”

After selecting the window size of 29 days, P1 performed
a task to figure out relations between snapshots and detect
temporal patterns (T2). P1 mainly focused on the Temporal
Measure View, showing the temporal changes of Motif
Fidelity and Motif Stability at a glance. P1 figured out state
change points by finding snapshot indexes where drastic
changes in measures occurred. Between the 33rd and the
36th snapshots, both Motif Fidelity and Motif Stability
drop drastically. Note that low Motif Stability guarantees
a change of snapshot state in general; it is a valid method
for finding change points. So, P1 checked whether the state
had changed with Temporal Status View and found a state
transition in the 35th snapshot. P1 said, ”When I look for
snapshots where the fidelity and stability change abruptly, I
can also see the state transitions”.

With Motif Composition View, P1 tried to figure out
motif compositions of the discovered temporal patterns
(T3). P1 brought three snapshots, 34th, 35th, and 36th,
located around the detected change point. First of all, P1
asked us about the criteria for dividing 36 motifs into seven
types. Then, P1 detected severe differences in the triangle
and cycle-type motifs of the 35th snapshot from others. P1
also reported that Motif Composition View not only offers
a chance to detect changes in pattern over time but also
analyze it in more detail. From this observation, P1 assumed
that at the time period of the 35th snapshot, some huge
events had happened, and employees exchanged emails a
lot. We confirmed P1 that the time period was when the
Enron stock hit an all-time high price(August 23, 2000).

At last, P1 tried to find CEOs of the Enron corporation
from selected snapshots and discover the dominant motif
with Network View (T4). However, due to the massive
amount of nodes visualized in Network View, P1 suffered
from scalability issues, unable to find CEOs from the data.
Node clustering with Motif Composition View was not
effective because motif compositions of CEOs are not dis-

Fig. 7. Workflow of P2 validating the window size of 2 months. (A)
Select the window size. (B) Observe detected snapshot states and
their distances. Seven different states are detected. (C) Observe motif
compositions of snapshot states. In this case, some states are not well-
clustered.

tinguished from others. Also, P1 pointed out that the lack
of motif composition visualization in Network View made
it difficult to perform T4 solely with Network View.

In general, P1 employed the system in a manner consis-
tent with our anticipated usage scenario in Section 5. Such
results verify the validity of our user scenario as well as the
effectiveness of our system design. While performing T1 and
T2, P1 was able to get an insight into the best-fit window size
to create snapshots and relations between them. Also, time
performance in T1 and T2 was good, as P1 made decisions in
a short time. P1’s trust in snapshot validation measures not
only supported P1’s rapid decision-making but also gave
him high confidence about the decision. However, there
exists a little misgiving in MC . As a result, P1 was able
to get the essence of the overview of the dataset throughout
the workflow but had a hard time achieving the essence of
detail.

6.3 Case Study: Citation Network
For P2, we conducted a case study with the high-energy
physics citation dataset (HEP-PH) [3]. The data includes
34,546 papers uploaded to the HEP-PH section of arXiv and
421,578 citations between them from January 1993 to April
2003 (124 months). We decided a month as a base time unit
and provided twelve candidate window sizes: one month to
12 months.

To find the best-fit window size for the data, P2 first
observed Slicing Navigation View (T1). P2 mainly focused
on the overall score of all three measures but did not
rely entirely on it. ”I don’t rely on metrics when making
decisions because there might be some distortions or loss
of information. I make decisions after observing the data
inside”, P2 said. P2 utilized Slicing Navigation View as
a recommendation list and excluded window sizes with
low scores. From the top of the list, P2 observed whether
temporal patterns are well distinguished in each window
size. Then, P2 selected every snapshot with the state filter
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Fig. 8. Workflow of P2 validating the window size of 7 months. (A)
Select the window size. (B) Observe detected snapshot states and
their distances. Two different snapshot states are detected. (C) Observe
motif compositions of snapshot states. In this case, the two states are
well-distinguishable with their difference in ping-pong and triangle-type
motifs.

of Temporal Status View and compared their motif with
Motif Composition View. P2 believes that a well-executed
slicing should clearly distinguish each state. Window size of
2 months, which is the top rank in overall score (Figure 7.A),
was not satisfactory for P2 because some of its network
states are not well clustered (Figure 7.C). However, a win-
dow size of 7 months, despite its mediocre rank (Figure 8.A),
had better clustering results (Figure 8.C). Therefore, P2 con-
cluded a window size of 7 months was the best-fit window
size.

P2 mainly observed relations between snapshots with
Temporal Status View (T2). P2 first checked how many states
had been detected (Figure 8.B) and observed how the states
of snapshots changed over time. With a window size of 7,
P2 found that state one had been detected in the beginning,
while state 2 was dominant in the end. However, unlike
P1, P2 did not take the temporal changes in measures as
an indicator of temporal patterns and did not gain much
insight from Temporal Measure View. Instead, P2 utilized
the bar chart at the left as an indicator of overall quality.

With Motif Composition View, P2 tried to analyze the
detected inner structural patterns of states (T3). P2 first
sorted selected snapshots in cluster order. Then, P2 ana-
lyzed the motif compositions of each state and compared
them with others (Figure 8.C). P2 said, ”When referring
to the description and image of the motif’s structure, it
was possible to get a rough idea of what patterns the
snapshot generally has.” P2 also said, ”The difference in the
composition of motifs was clearly seen, so it was possible
to grasp the difference between each state.” When we asked
P2 to describe the structure of state 2, which has a high
frequency of ping-pong motifs, P2 assumed there might be
controversy on specific research topics that papers referring
to each other have been more frequent than before.

We asked P2 to figure out the paper which seems to
be most important in the data and describe its network

structure (T4). Considering the type of data, the most critical
node was decided as the most cited paper. P2 first tried
to find relations between nodes with Network View and
figured out the nodes with a high degree. Then, P2 checked
Motif Composition View to determine the selected nodes’
motif composition patterns. With this process, P2 was able
to find out the paper with a high degree and its relations
with other papers. However, P2 said that Network View
alone was not that helpful to perform the task. Cooperation
with Motif Composition View was necessary. Although a
node-link diagram is an effective visualization for analyz-
ing network structure, it also has scalability issues when
visualizing multi-variate network data. Augmentation of
additional information, such as the degree of node or di-
rection, should be added to make Network View effective
for deriving insights.

In contrast to P1, P2 checked from the detailed motif
composition and validated that the slicing was actually
done properly while performing T1. For example, unlike
our usage scenario, P2 utilized Motif Composition View
from the very beginning of the workflow. Through this
exploration, P2 gained deep insight into selecting proper
window sizes and their inner structural patterns and high
confidence about his decision. However, time consumption
became much higher than P1. P2 also reported a prominent
high-level essence of the dataset but a shortfall when it came
to the details. The abundance of motifs in the dataset, which
offers a general overview, works as an obstacle in examining
detailed information Network View.

7 DISCUSSION

7.1 Temporal Network Motifs

Our study has demonstrated the potential of utilizing both
the structural and temporal characteristics of a network
for classification purposes. Incorporating a larger variety of
TNMs may enhance the performance of visual analytics sys-
tems. Although our study focused on 2-3 node, 3-edge, and
∆w motifs, motifs with a larger number of nodes and edges
can better convey the structural and temporal characteristics
of the original network. Furthermore, selecting motifs based
on both their duration and the spacing between their edges
can further enhance their expressiveness [44].

However, increasing the variety of motifs can also lead to
the curse of dimensionality, making it more challenging to
compute the distances between motif compositions. Hence,
further research is needed to extract meaningful subgroups
of TNMs and explore data transformation and distance
comparison methods that consider these improvements. To
overcome these limitations, it is necessary to complement
TNMs with other methods, such as node degree or centrality
measures.

7.2 Dynamic Network Slicing and Workflow

Numerous studies have emphasized the importance of ob-
serving dynamic networks with various resolutions instead
of relying on a single optimal window size. In line with
this view, our study also demonstrated, through a usage
scenario, that the pattern that can be observed varies de-
pending on the window size. It also proved the necessity

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3337396

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

of trying diverse window sizes to find patterns from a
dynamic network, and our proposed methods could help
users effectively perform the process. Recommendations
with visualization helped users easily find proper candi-
dates and validate them.

However, such workflow has a limitation in that the
exploration space is limited to fixed-sized windows whose
sizes are regularized with base time units. In our case study,
both participants answered that they could figure out the
best window size from the candidates, but the best window
size did not fit every snapshot. Also, P2 tried to validate
the chosen window size and select another one, which
was time-consuming. If we try to expand the options in
window sizes and consider positions of window size, it
will be unable to manage it with static, fixed-size windows.
Therefore, in future work, we will research non-uniform
slicing algorithms using TNMs as the basis. It will meet the
requirement to consider various window sizes and positions
while further reducing human cognitive load because it
has the same effect of navigating with multiple customized
windows simultaneously.

7.3 Visual Analytics System Evaluation

We analyzed the case study results according to four heuris-
tic aspects: insight, time, essence, and confidence. For in-
sight, both P1 and P2 were able to find insights into the
optimal window size for their respective methods (T1).
They also gained insights into the relationships between
the snapshots of the network (T2) and the patterns that
predominantly appeared (T3). However, they struggled to
gain insights into the composition of the internal graph
attributes (T4). This phenomenon was similar to essence;
while participants found the Slicing Navigation View help-
ful for grasping an overview of the data, they reported
difficulty in understanding details as they got closer to
them.

Regarding time, P1 made quick decisions using the
system, but P2 did not. It was because, unlike P1, who
trusted the snapshot validation measures, P2 went through
the process of verifying the results directly, even if the
measure scores were high. Both eventually had confidence
in their choices, but P1’s process of gaining confidence was
shorter, suggesting a higher level of confidence compared
to P2. These results emphasize the flexibility of our system
in exploring dynamic networks. Investigating how different
users react to MoNetExplorer will be an interesting future
avenue to explore.

In conclusion, for insight and essence, high scores could
be given at the high level, but scores decreased as they
approached the low level. For time and confidence, P1, who
trusted the measures, gained high scores, while P2, who
relied more on direct observation of results, gained lower
scores. It might be necessary to design measures more intu-
itively and improve the close connection between overview
and detail in the visualization system to accommodate users
with tendencies like P2. Additionally, improvements in vi-
sualizations, such as showing the TNM kernel in Network
View, are needed for better support of low-level tasks (T4).

7.4 Snapshot Quality Evaluation

Our study builds upon prior research on window sizing in
dynamic networks and proposes three distinct measures to
evaluate the quality of network snapshots. These measures
offer a comprehensive approach to assessing snapshot qual-
ity and can guide the selection of appropriate window sizes.
In the case studies, unlike our usage scenario, no attempt
was made to sort Slicing Navigation View with the overall
score of partial or other measures. Participants judged that
the theoretical basis for the three measures was plausible,
so it was most desirable to rank them by reflecting all three
It confirmed that users could effectively use our proposed
measures to evaluate slicing. However, there is a further
need for a complex measure that reflects all the various
elements of the dynamic network.

Nevertheless, the question remains: What makes a snap-
shot truly ”good”? To answer this question, many studies,
including ours, have presented measures for evaluating
snapshot quality and validating the efficacy of good snap-
shots. However, sometimes measures fail to evaluate the
quality properly. In our usage scenario, for instance, the 29-
day window size recorded the best score in the sum of Motif
Fidelity, Motif Stability, and Motif Clusterness, but other
window sizes provided better user experience. In fact, in the
case study, P2 did not fully rely on the measures to evaluate
the snapshot quality. Instead, P2 decided by observing the
details of the resulting snapshots. Regardless of the slicing
method, snapshots should be able to provide insights to
human users.

Considering human visual cognition, some researchers
tried to minimize the visual complexity of snapshots [20],
[21]. However, these studies need more consideration for
delivering structural and temporal evolution information.
Therefore, it is crucial to find a balance between information
delivery and the visual complexity of snapshots. In a follow-
up study, we will search for the balance by conducting a
user study to build a user-based baseline for evaluating the
quality of snapshots.

8 CONCLUSION

We present MoNetExplorer, an interactive visual analytics
system that leverages TNMs to facilitate the selection and
validation of window sizes for slicing dynamic networks.
Our system allows users to explore multiple candidate
window sizes and identify changes in the network structure
over time. By presenting usage scenarios and case studies
with a real-world dynamic network dataset, we showed
the effectiveness of MoNetExplorer in selecting proper win-
dow sizes and detecting changing patterns in the temporal
occurrence of actual historical events. Our contributions
include (1) the development of TNM-based measures and
algorithms for selecting and validating window sizes and (2)
the design and implementation of MoNetExplorer as a com-
prehensive visual analytics system for dynamic network
analysis. We believe that our system is useful for researchers
and practitioners who want to understand the evolving
relationships between entities in dynamic networks.
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